Technology to facilitate business

Inspiring Productivity with an Innovation Focused Culture

By Virgil Miller, Executive Vice President and...

Inspiring Productivity with an...

The Numbers Game: Making Hospital Data User-Friendly

By William Feaster, M.D., Chief Health Information...

The Numbers Game: Making Hospital...

Data Visualization Trends: Media and the Spread of Data Visualization

By Micah Melling, Chief Data Scientist, Americo...

Data Visualization Trends: Media and...

Building Relationships-Establishing Contingencies Before a Disaster

By Julia Halsne, Business Continuity Manager, Ebmud

Building Relationships-Establishing...

Applying Deep Learning to Streamline Healthcare Administration

By Sanji Fernando , SVP Artficial Intelligence & Analytics Platforms, Optum

Applying Deep Learning to Streamline Healthcare AdministrationSanji Fernando , SVP Artficial Intelligence & Analytics Platforms, Optum

Much like the innovative breakthroughs seen in image recognition and natural language processing, deep learning neural networks also hold enormous opportunity to help transform health care. However, while the clinical uses of artificial intelligence in health care have attracted a lot of attention, it is the administrative applications that stand to have a more immediate and positive impact for health care organizations. Let me explain how.

First, applying artificial intelligence to clinical decisions typically has greater regulatory burdens and implications to patient care. Administrative processes typically do not directly impact clinical care. As a result, we can put these tools in place for administrative improvements far more quickly and broadly. Beyond that, there are so many areas in health care administration with complex and time-consuming processes –coding, risk adjustment, prior authorization and provider directories – that could benefit from the automation deep learning brings that even small improvements can have a big impact.

Secondly, health care administrative processes are well suited for deep learning because many interactions between a care provider and an insurer are a dialogue on the level of care and payment for that care. When a health care system can come to an automated decision that both payers and providers are satisfied with, it eliminates a lot of inefficiency and volume by changing the process to require human review only in cases of exception.

Many health care executives already recognize the potential of AI driven applications. According to a 2018 Optum survey of 500 senior level leaders across the industry, 43% have begun implementing deep learning by automating business processes such as administrative tasks and customer service. Thirty-six percent are employing it to detect patterns in health care fraud, waste and abuse.


Let’s look more closely at case reviews for medical necessity as an example of a critical administrative process ripe for deep learning. The traditional method involves physicians manually reviewing lengthy patient medical records to determine that inpatient admission, for instance, is justified. If every record is reviewed, this becomes a very time-consuming and costly process.

In contrast, a deep learning neural network can be trained using hundreds of thousands of complex decisions made by physicians in past case reviews. By analyzing past decisions, the neural network can determine which cases are complex enough to require a physician advisor review. The more cases it reviews, the more accurate it becomes further reducing the time, cost and number of denials.


Deep learning works by essentially turning text into numeric scores, but the process can seem like something of a “black box “if clinicians aren’t given insight into the “why” behind a prediction or classification.

To overcome this, it’s important to help staff understand and have some say into how data is scored. For example, work with clinicians and demonstrate how notes and even which particular words are scored so they can confirm that they would attribute the same importance to those words. Bringing more transparency to the process is vital for achieving buy-in from stakeholders and trust in the model.


Developing and deploying innovative and efficient solutions to improve coding, claims processing and case reviews and prior authorizations promises to save millions. In fact, U.S. insurers can unlock $7 billion in total value — 10% to 15% of operating expenses — in 18 months by using artificial intelligence to automate certain core administrative functions, according to a study from Accenture.

Lowering per capita costs is just one aspect of the Triple Aim. But, as health care leaders, tackling costs also enables us to better address making better care more available to more people. Advanced technology like deep learning allows us to harness the vast amounts of health care data generated daily and put it to work making a better system for everyone.

Read Also

Making Sense of Environmentally-Aware Robots

Making Sense of Environmentally-Aware Robots

John Dulchinos, Vice President, 3d Printing & Digital Manufacturing Jabil
With an Aim to Optimize Telematics Security

With an Aim to Optimize Telematics Security

Kevin Baltes, Director - Product Cybersecurity General Motors
The Role of Work Management in a Maintenance Organization

The Role of Work Management in a Maintenance Organization

Brian Marczak, Former Maintenance Director, Stillwater Mining Company
A Systematic Approach to Forecasting in Energy Trading: Getting the Most Out of Your Predictions

A Systematic Approach to Forecasting in Energy Trading: Getting the...

Nazim Osmancik, Chief Risk Officer, Energy Marketing & Trading, Centrica Plc
How To Implement An Effective AI Strategy In Your Business

How To Implement An Effective AI Strategy In Your Business

Jair Ribeiro, Senior Business Analyst – Artificial Intelligence Volvo Group IT [STO: VOLV-B]
Getting To Zero - Future Fuels and Wild Goose Chases

Getting To Zero - Future Fuels and Wild Goose Chases

Roger Strevens, VP, Global Sustainability, Wallenius Wilhelmsen [FRA: WNL]